Eurographics/ IEEE-VGTC Symposium on Visualization 2008 Volume 27(2008, Number 3
A. Vilanova, A. Telea, G. Scheuermann, and T. Méller
(Guest Editors)

Discrete Multi-Material Interface Reconstruction
for Volume Fraction Data

J. C. Andersoh, C. Gartl, M. A. Duchainea8, and K. I. Joy

Lnstitute for Data Analysis and Visualization, Departmeih®omputer Science, University of California, Davis
e-mail: {janderson, cgarth, kijoy}@ucdavis.edu
2Center for Applied Scienti ¢ Computing, Lawrence Livermoratibnal Laboratory
e-mail: duchaine@lInl.gov

Abstract

Material interface reconstruction (MIR) is the task of constructing boupdaerfaces between regions of homo-
geneous material, while satisfying volume constraints, over a structuredsiructured spatial domain. In this
paper, we present a discrete approach to MIR based upon optimizinghikéng of fractional volume elements
within a discretization of the problem's original domain. We detail how to trois and initially label a dis-
cretization, and introduce solume conservative swapove for optimization. Furthermore, we discuss methods
for extracting and visualizing material interfaces from the discretization. Ocinrigjue has signi cant advan-
tages over previous methods: we produce interfaces between multiplgatsatieat are continuous across cell
boundaries for time-varying and static data in arbitrary dimension with beahekror.

Categories and Subject Descriptgscording to ACM CCS) 1.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction MIR algorithms to produce different solutions. The simplest

) ) o ) measure of correctness for any reconstruction is its total
Surface extraction has long been an important topic in scien- ¢rror Almost as important for visualization applications is

ti ¢ visualization. The task has often been to generate seg- material interface continuity across cell boundaries: discon-
menting surfaces through binary- or multi-labeled data on necteqd surfaces are physically implausible and dif cult to

structured and unstructured meshe€§7, NF97, HSSZ97 analyze. Furthermore, metrics such as the number of primi-

JLSWO02BLO03]. tives, connected components, surface curvature, and surface
In this work, we consider a different segmentation prob- area can be used to measure the quality of a reconstruction.

lem known as Material Interface Reconstruction (MIR). In this paper, we reinterpret MIR as a segmentation prob-

Here, there is na priori labeling of mesh elements. Instead, lem over a discretization of the problem'’s original spatial do-

in ann-material problem, each cell in the mesh has an asso- main. Our formulation eases the extraction and visualization
ciatedn-tuple describing the fraction of each material within ~ of material interfaces, and unlike previous work:

that cell. The goal is to segment each cell into homogeneous
material regions such that the total volume of each material

within each cell matches the problem's volume fractions.

material volume is preserved with bounded error,
interfaces are continuous across cell boundaries,
interfaces have low surface area and curvature, and
reconstruction works for time-varying and static data of

One of the dif culties of MIR is that for any given volume ; . ' )
arbitrary dimensionality.

fraction there are limitless volume-preserving cell decom-
positions, with different topologies and embeddings. The Additionally, our technique scales well with respect to ma-
under-constrained nature of this problem permits different terial interface complexity, and is easily parallelized.
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The basis of our approach is to discretize cells contain-
ing more than one material into small, fractional volume el-
ements. Each of these “subcells” is then labeled as being
entirely one material or another based upon the problem's
volume fractions. Producing a good labeling of the subcells
is a non-trivial problem, however an initial labeling can be
effectively optimized. In our work, each subcell is attributed
a simple, local energy equal to the number of its neighbor-
ing subcells with a different label. Known as the Potts-model
energy (seeWWu82), this metric has been widely used in in-
terface problems, from studying cellular structurés&sP2
to interpolating region boundaries between segmented im-
ages DBTHO7]. Optimizing the Potts-model energy over
the discretization leads to a labeling with low surface area
and curvature — desirable properties that translate to our -
nal interface reconstruction.

Working in a discretized setting greatly simpli es the con-
struction of material interfaces. In our method, material in-

terfaces are surfaces that separate regions of the discretiza

tion with different material labels. Surface mesh representa-
tions of these interfaces can be easily extracted, even in case
with complex topology such as multi-material junctions and
multiple intersections along a single mesh edge.

In the next section, we discuss applications and existing
algorithms for MIR. Sectior8 details how we cast interface
reconstruction as an optimization problem over a discrete,
labeled grid. Techniques for extracting and visualizing ma-
terial interfaces from the discretization are detailed in Sec-
tion 4, followed by some notes on the implementation of our
method in Sectio®. Finally, we present results of our work
over two- and three-dimensional uid ow datasets in Sec-
tion 6.

2. Related Work

Research on MIR has been largely driven by its applica-
tion in computational uid dynamics. The Volume of Fluid
(VOF) method HN81] is a simulation technique for Eu-
lerian multi- uid hydrodynamic ows [RK98]. In a VOF
simulation, fractional material volumes are maintained for
each cell. To advance the simulation, interface geometry is
reconstructed in order to calculate the ux of material be-
tween cells. Storing per-cell material volumes, rather than
explicit interface geometry, eases the simulation of compli-
cated ows, however the reconstruction of material inter-
faces remains a crucial part of accurately advecting mate-
rials [JEPPO4

There are many MIR algorithms for VOF simulation.
The Simple Line Interface Calculation (SLIC) method de-
scribed by Noh and WoodwardW76€] is one of the earli-
est and simplest MIR algorithm. Cells are partitioned with
axis-aligned planes, such that the total material volume in
each cell is correct. The Piecewise Linear Interface Cal-
culation (PLIC) algorithm of YoungsYpu82 is similar to

S

SLIC, however cells are partitioned by planes aligned to lo-
cal material “gradients.” While PLIC is fast and preserves
volume fractions, its reconstruction is discontinuous across
cell boundaries and is ambiguous for three or more materials
due the ordering of its binary segmentations.

There have been a number of modi cations to the ba-
sic PLIC algorithm. Pilliod and PuckefIEPP0# describe
two algorithms, both of which use a least-squares approach
to minimize the error of approximately linear interfaces.
Garimella et al. GDSS0% demonstrate how to x certain
local topological inconsistencies in PLIC reconstructions.
Dyadechko and Shashkod§05 DS0q describe an inter-
face reconstruction algorithm for volume fraction data aug-
mented with material centroid information.

Attempts have also been made to develop methods for the
direct visualization of volume fraction data. A commonal-
ity of these approaches is that they produce interfaces that

are continuous across cell boundaries — crucial for compre-
hensible visualizations. However, existing methods do not
preserve volume and do not support an arbitrary number of
materials per cell.

One visualization approach is to ignore the volume frac-
tions, and reinterpret MIR as a multi-material segmentation
problem. Mesh nodes are assigned a material label — in-
duced by pure cell neighbors, or from the predominant ma-
terial surrounding the node — and the goal becomes to gen-
erate separating surfaces between nodes with different la-
bels. For rectilinear grids, methods such as dual contour-
ing [JLSW03 and multiple material Marching Cube meth-
ods HSSZ97 WIMS03 BLO3] produce valid segmenta-
tions; Nielson and FrankéNJF97] describe how to construct
segmenting surfaces for unstructured tetrahedral meshes.

Isosurfacing of volume fractions is also common. Bonnell
etal. BSD 00,BDS 03] perform isosurfacing over the dual
grid, calculating isosurface intersections using barycentric
interpolation in the space of the volume fractions. A prob-
lem with this approach is that interfaces no longer coincide
with the mesh from the original problem. Mereditfi¢r04
averages volume fractions to mesh nodes and performs iso-
surfacing upon the original mesh. Nevertheless, both meth-
ods miss small scale features entirely (e.g., thin shells), do
not preserve volume fractions, and break down with many
materials.

In our work, we subdivide cells containing material inter-
faces and optimize the labeling of small, fractional volume
elements. Material interfaces become segmenting surfaces
between regions of the discrete grid with different material
labels. In the next section we describe how to construct and
optimize the labeling of the discretization; the extraction and
visualization of continuous material interfaces in this dis-
crete context is described in Sectién
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Figure 1: Algorithm overview focusing upon a single mixed cell witthqoure and mixed neighbors (a). During optimization of thledled
discretization (b) aszolume conservative swagf two subcell labels (c) is performed probabilisticallgged upon its effect on the Potts-model
energy. The converged material interface reconstructimapced by our method is shown in (d).

3. Method neighborhoodN (which may span original cell boundaries),

Consider a spatial domain that has been decomposed intoandd: ftrue - 1;false : @.

a nite grid of cellsC. In ann-material problem, each cell Extending the Potts-model energy over the entire dis-
c 2 C has an associated tuple = (v1;:::;Vn), where the cretization

valuey; is the fractional volume of materialvithin the cell. _ e .

Volume fractions are non-negative ( 0), and account for E(f) = x?b Ex(f); )

the entire volume of the cel&(L ;v = 1). Pure cells are

entirely one material, whilenixedcells have multiple non-  allows for optimization of the labeling through energy mini-
zero volume fractions. Figuria)shows a hypothetical MIR mization. The end result of optimization will be a smoother,
problem in which pure cells are shown in a solid color. simpler labeling and improved material interfaces.

Our method begins with a discretization step. Each cell ~ We optimize the energy function in Equatiguising sim-
is subdivided intoS subcells of uniform fractional volume  Ulated annealingGV83] in order to have explicit control

dA= 1 toform the discretizatio®. We allow each subcell of how the labeling is changed. More recent techniques such
in turn, i : i : h 701,KZ02 tused b their opti

in turn, to be assigned a label corresponding to one ohthe @S graph cuts§VZ01, ] are not used because their opti-
materials. mization moves do not conserve volume, a rm requirement

- . o in our application.
In this discrete setting, we formulate material interfaces

as separating surfaces between region® ofith different In simulated annealing, changing from one state to an-

material labels. After discretization, therefore, the goal be- Other —i.e., from a labeling to a new labelingf™ — is al-

comes to generate a simple labeling of the subcells such that/owed probabilistically as a function of the annealing tem-

problem's volume fractions are preserved as closely as pos- PeratureT and the corresponding change in eneitgy

sible. Our approach — described in the remainder of this sec- 1 DE < 0

tion — is to rst produce an initial, valid labeling and then P= _ ) 3)
i e DEST otherwise

apply optimization. :

We begin by randomly assigning material labels to sub- Changes that improve the labeling are always taken.

cells with the constraint that for each lab@l (1;:::;n) there ~ Changes that increase the total energy remain likely when
are approximatelya’ﬁ subcells with labei in cell c. Fig- T is high, however as the temperature decreases, the system
ure1(b)illustrates the initial state d after labels have been ~ Converges because those changes become much less likely.
assigned based upon the volume fractions showirfa Per-cell volume can be maintained by restricting the la-

To improve the labeling we de ne a local measure of the beling changes considered during optimiz_ation. In our ap-
labeling quality. In this paper, we use a discrete estimate of Proach, we only allow theolume conservative sway two

the labeling smoothness known as the Potts motkeigZ]. labels. Here, the labels of two randomly chosen subcetls —
Consider a labeling of D such thatfy is the label of sub- ~ @ndy—within a cellcare exchanged to produce a new label-
cellx. The Potts-model energy &is the number of subcells N9, as shown in Figuré(c). Consider the initial Potts-model
neighboringk with a different label: energy of the subcell pajx;y) under the labeling':
Ex(f)= & Wiy d(fx6 fy); 1) Exy(f) = Ex(f)+ Ey(f):
y2N

Exchanging the labels of this pair would produce a new la-
whereW is a weighting function for offsets within the local  beling £0 with energyEX;y(fO), in which the total per-cell,
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per-material volumes remain unchanged. The change in en-
ergy DE = Ex;y(fo) Exy(f) produced by the swap can be
used to determine if the labelind is accepted during opti-
mization (EquatiorB).

Using volume conservative swaps guarantees that the la-
beling f accurately re ects the problem's volume fractions
throughout the optimization process. Thus, an upper bound
on the per-cell errog(c) of the discretization labeling is:

(n 1)dA
0

if cis mixed,
otherwise.

&(c) 4
This error bound is driven by the subdivision r&eand
the resulting quantization of the cell's volume fractions into
multiples of sizedA. Optimization may be performed for
an arbitrarily short or long period of time depending on the
quality of the labeling desired. SectioBsand6 provide in-
sight into the convergence behavior of our approach.

4. Visualization

The labeling of fractional volume elements as entirely one
material or another — described in the previous section — ex-
plicitly encodes the characteristic function of our MIR solu-
tion. In this section, we discuss methods for visualizing ma-
terial regions and constructing surface mesh representations
of material interfaces in this discrete context.

Material regions can be directly visualized in our ap-
proach. Generally speaking, we assign a unique color to each
material and render the discretizatibncolored by its cur-
rent labelingf. In 2D this produces a color image, and in
three dimensions results in an image cube which can be vi-
sualized using volume rendering. Time-varying volume frac-
tion data naturally leads to a sequence of multiple images.
Visualizing material regions is attractive in 2D since oc-
clusion is not an issue; correspondingly, in this paper we
render material regions rather than interfaces for all two-
dimensional datasets.

Material interfaces are also simple to extract: interfaces in
our discrete formulation are surfaces that separate regions of
D with different material labels. A surface mesh representa-
tion of material interfaces can be constructed by extracting
co-incident faces between adjacent subcells with different
labels.

Surface meshes constructed in this way are able to cap-
ture simple and complex interface topologies, such as multi-
material junctions and multiple intersections along a single
mesh edge. They also exactly match the volume fractions
given by the labelingf, and the problem's volume frac-
tions with bounded error (Equatiof). Upon close inspec-
tion, however, boundaries constructed in this manner can be
unpleasant to visualize because they capture sharp bound-
aries at the sub-cell scale.

An alternate surface construction option is to apply

a multi-material segmentation algorithm over an approx-
imate, smoothed version of the labeling eld. For two-
material problems interfaces can be extracted using March-
ing Cubes LC87]. Interfaces in problems with three or
more materials can be extracted using one of various multi-
label segmentation algorithms, such as multi-label Marching
Cubes methoddHSSZ97WJIMS03 BL03], Dual Contour-

ing [JLSWO03, or the method of Nielson and Frankef97

on an implicit tetrahedrization of the rectilinear domain. We
have found that Iteringf with a narrow Gaussian kernel im-
proves material interfaces for visualization without introduc-
ing large error (see Sectiohfor a discussion of the effects
of smoothing upon volume preservation).

5. Implementation

In this section, we provide some implementation details re-
garding topics such as performance, convergence, neighbor-
hood size and weighting, and accuracy.

Performance There are two important areas of perfor-
mance to consider: computation and memory consump-
tion. In terms of computation, simulated annealing opti-
mization of the labeling energy is not cheap. However, it
is straightforward to develop a highly parallel implemen-
tation over independent sets of cells using “checkerboard-
ing” [WPS97. Interactive visualization also hides the cost
of optimization.

The memory requirement per subcell without encoding is
a single byte fon < 256 materials. Furthermore, memory
usage is reduced by the sparseness of mixed material cells;
often the vast majority of cells in a volume fraction dataset
do not contain interfaces. It is ef cient to only subdivide
mixed material cells, thus allowing our method to scale
with complexity of the material interfaces rather than the
size of the problem domain.

Convergence In some applications, the quality of simulated
annealingcan be strongly in uenced by thennealing
schedule-i.e., how the temperatufie changes over time.
We have found, however, that the annealing schedule is
not a crucial factor in our method. This is because the
entire system starts very close to a local minimum be-
fore optimization: pure cells heavily in uence neighbor-
ing mixed cells, but do not change themselves. Setting the
temperature to a low constant allows the system to consis-
tently converge to a reasonable reconstruction without a
complicated annealing schedule. For all results presented
in this paper we have usdd= 0:25.

Neighborhood The neighborhoodN and weight function
W used in Equatiod are also important. In this paper we
consider the neighbors of subcelto be its directly inci-
dent subcells — i.e., 8 neighbors in two dimensions, and
26 neighbors in three dimensions, etc. For time-varying
data, the neighborhood can also be extended over time to
encourage temporal coherence. The weight between two
subcells is simply the inverse magnitude of the offset be-
tween the two subcells.
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Figure 2: Evolution in time of the two-dimensional uid ows consigerin this paper; interfaces were reconstructed by our meti@n the
top, a bubble of low density uid rises through a denser u@h the bottom, ve uids pass two cylinders (six total matés).

Accuracy The accuracy of our reconstruction in terms of
volume conservation is determined by the level of sub-
division used for discretization (Equatid@). Higher lev-
els of subdivision lower the error bound, however conver-
gence will take longer. Faf-dimensional rectilinear grids
we can de ne the subdivision ratg, such thatS= rd
In practice, we have found that subdivision rates between
R= 5andR= 10 produce good results with fast conver-
gence in two and three dimensions. The upper bound on
error for a 2 material problem in three-dimensions.&%0
with R= 5, and 01% with R= 10 (125 and 1000 sub-
cells per cell, respectively). Note that these bounds apply
to non-smoothed interfaces; in Sectidiwe discuss the
empirical error of smoothed surfaces.

6. Results

We have tested our method across multiple volume fraction
datasets resulting from CFD simulations in two- and three-
dimensions. Results in this section were obtained with a
multi-threaded software implementation on an Apple Mac-
Book Pro notebook computer (2.33 GHz Intel Core 2 Duo
processor, 2 GB memory, and an ATl Radeon X1600 graph-
ics card).

Our rst dataset was generated from a two-dimensional
simulation of a low density uid bubble rising through a
denser uid. The computational domain was & Gactilin-
ear grid. The top row of Figur2 provides an overview of
this ow, reconstructed by our method, as it evolves over
200 timesteps. The top row of FiguBecompares our inter-
face reconstruction to PLIC over a 13x10 cell window; our
reconstruction produces simpler, smoother interfaces while
preserving volume from the original data to within 1% error.
Subdivision was set to £Gubcells per mixed cell, and sim-

Figure 3: Close-ups of regions reconstructed by PLIC (left) and
our method (right). Images in the top row are from the two-
dimensional bubble dataset; the bottom row shows a “T-jiomet
between three materials in the two cylinders dataset.

cylinders for clarity, the geometry is neither part of vol-
ume fraction dataset, nor known to our MIR algorithm. In
the bottom row of Figure8 we show a close-up of a 3x3
cell window in which a “T-junction” between three materi-
als is located; our method, while discretized, better captures
the behavior of the interfaces around the junction. We also
use this ow to illustrate the convergence of our method.
Figure4 shows a single timestep of this ow with approxi-
mately 7% mixed cells. Simulated annealing was performed
on different parts of the discretization labeling for differ-
ent lengths of time: the top third was left in the initial state

ulated annealing was performed for 10 seconds per timestepwithout optimization, the middle third was optimized for 1

prior to visualizing the material interfaces.

The next dataset is from a two-dimensional simulation of
ve uids passing two cylinders. The computational domain
was 128x64. Our reconstructions of this ow use & $0b-
cell per cell subdivision. The bottom row of Figu2epro-
vides an overview of this ow, reconstructed by our method,
as it evolves over 256 timesteps. Due to the method of simu-
lation, the cylinders and “empty” space (in grey) are mod-
eled as a sixth material. While we show geometry of the
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second, and the bottom third was optimized for 10 seconds.
While in the most complex cases, the upper error bound re-
mains 2% due to discretization regardless of optimization,
the interfaces become simpler and smoother with brief op-
timization. Simulated annealing for longer than 10 seconds
per timestep does not signi cantly improve the results.

Our nal dataset is an extension of the bubble simulation
to three dimensions: again, a low density uid bubble rises
through a denser uid. The grid is now &4and the simula-
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Annealing Time

Initial State

1 second

10 seconds

Figure 4: Simulated annealing was performed on different parts oftiberetization labeling for different lengths of time: ttop third was
left in the initial state without optimization, the middkeérd was optimized for 1 second, and the bottom third waswaiggd for 10 seconds.

tion consists of 100 timesteps. Figderovides a split view ods, producing interfaces between multiple materials that are
of interfaces reconstructed from this dataset as the bubble continuous across cell boundaries for time-varying and static
bursts: on the left interfaces were extracted by isosurfacing data in arbitrary dimension with bounded error.

the smoothed discretization labeling (as described in Sec- .

tion 4), and on the right “surfaces” were generated by PLIC. 1 N€re remains, however, future work to be performed on
Subdivision was set to&subcells per cell, and simulated an- the algorlthmlcs of discrete multi-material interface recon-
nealing was performed for 10 seconds per timestep prior to Struction:

visualization of the material interface%s part of the supple-
mental material to this paper, we include a movie of both in-
terface reconstructions in a split view over all 100 timesteps.

Unstructured Grids We have only considered volume
fraction data over rectilinear grids; a logical extension of
this work is to support unstructured meshes. A straight-
Section5 noted that the sparseness of cells containing ma- ~ forward approach might be to discretize the space around

terial interfaces leads to memory savings when subdivision  mixed, unstructured cells with a regular subdivision, as-

is only performed over mixed cells. Figuéeplots the per- sign subcells to the cell containing their centroid, and to
centage of mixed cells over time for each uid ow dataset proceed with optimization and visualization as described
considered in this paper. For both bubble datasets, the per- in this paper.

centage is very low — below 6% — over all timesteps. For Thin Interfaces Our method, like most others, can have

the ve uids passing two cylinders dataset, the percentage  dif culty reconstructing thin interfaces. Figurgis an ex-

of mixed cells increases over time because the material in- ample. In our approach, reasonable discretization reso-

terfaces become more complex. However, even for the most  lutions can be insuf cient to allow thin surfaces to con-

complex timestep, the storage cost of the discretizationisre-  nect across a cell. Additionally, optimization of the Potts-

duced approximately 90% by only subdividing mixed cells. model energy can produce “blobs” rather than thin in-
terfaces due to its surface area and curvature minimizing
properties.

Smoothing As mentioned in Sectiod, smoothing the la-

In this paper we have presented a discrete approach to MIR  beling eld prior to segmentation avoids unwanted visual

7. Conclusion

based upon optimizing the labeling of fractional volume el- artifacts at the sub-cell level caused by discretization. Af-
ements over a subdivided spatial domain. We introduced a  ter smoothing, however, the error bound discussed in Sec-
volume conservative swapove for the optimization pro- tion 3 is no longer valid. Empirically we have found that

cess, and discussed methods for extracting and visualizing the small size of subcells limits the volume changing ef-
material interfaces from a labeled discretization. Our tech-  fects of smoothing: for instance, the average volume error
nique gives signi cantly better results than previous meth-  for the three-dimensional bubble shown in Figbrevas
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Figure 5: Interface reconstructions of the three-dimensional baltztaset as the bubble bursts. On the left, we show theacteextracted
from our discretization labeling; on the right is the distioious 3D PLIC reconstruction which has only one polygongad.

approximately 5% after Gaussian smoothing of the la- 12 . .

beling eld. Increasing the discretization resolution t 8 Bubble ggg —

subcells per cell approximately halves this error. 10 = Cylinder (2D) -------

While the volume changing effects of smoothing are rel-

atively small and dif cult to perceive during visualiza- _ 8

tion, it would be best to have the advantages of smoothing g 6

while maintaining a tight error bound. In future work, we 8 JRSSNAg ¥

intend to apply volume-conservative surface fairing tech- 4 b 2 e

nigues, such as those of Desbrun et@MSB99 or Xiao I N \/”W

et al. [XLPFO0§, to this problem. 2 P Dbz
Energy Metric The Potts-model energy is not the only pos-

sible metric for the energy of a labeled discretization. In 5 02 04 06 08 1

the presence of domain-speci ¢ knowledge, such as spe- Time

ci ¢ material properties, other energy metrics might pro-

Figure 6: P t f mixed cell time. L t;
duce better results than the Potts-model energy. 9 ereentage of MXee Cells Ver ime. LoW perceniages

yield large memory savings, since subdivision is only peréal
Other domains, besides simulation, are likely to benet upon mixed cells.

from robust, volume conservative interface reconstruction

techniques. A concrete example is spectral imagery from

the eld of remote sensing (e.gV[GC 93]). The pixels | H L'_ il 4
of spectral images are sampled functions of radiance ver- { - = .
sus wavelength, rather than typical tristimulus RGB pixels. ! } . .
From these spectral functions itis possible to estimate the ra- o v . -

tios of different materials present at each pixeDP3. We
look forward to applying our methods in this setting to re-
construct sub-pixel interfaces within spectral images, as well
as to other problem with volume fraction data.

Figure 7: Thin interfaces (left, 10x10 grid) are dif cult to recon-
struct for both PLIC (middle) and our method (right).
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