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Abstract

Material interface reconstruction (MIR) is the task of constructing boundary interfaces between regions of homo-
geneous material, while satisfying volume constraints, over a structured orunstructured spatial domain. In this
paper, we present a discrete approach to MIR based upon optimizing thelabeling of fractional volume elements
within a discretization of the problem's original domain. We detail how to construct and initially label a dis-
cretization, and introduce avolume conservative swapmove for optimization. Furthermore, we discuss methods
for extracting and visualizing material interfaces from the discretization. Our technique has signi�cant advan-
tages over previous methods: we produce interfaces between multiple materials that are continuous across cell
boundaries for time-varying and static data in arbitrary dimension with bounded error.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction

Surface extraction has long been an important topic in scien-
ti�c visualization. The task has often been to generate seg-
menting surfaces through binary- or multi-labeled data on
structured and unstructured meshes [LC87,NF97,HSSZ97,
JLSW02,BL03].

In this work, we consider a different segmentation prob-
lem known as Material Interface Reconstruction (MIR).
Here, there is noa priori labeling of mesh elements. Instead,
in ann-material problem, each cell in the mesh has an asso-
ciatedn-tuple describing the fraction of each material within
that cell. The goal is to segment each cell into homogeneous
material regions such that the total volume of each material
within each cell matches the problem's volume fractions.

One of the dif�culties of MIR is that for any given volume
fraction there are limitless volume-preserving cell decom-
positions, with different topologies and embeddings. The
under-constrained nature of this problem permits different

MIR algorithms to produce different solutions. The simplest
measure of correctness for any reconstruction is its total
error. Almost as important for visualization applications is
material interface continuity across cell boundaries: discon-
nected surfaces are physically implausible and dif�cult to
analyze. Furthermore, metrics such as the number of primi-
tives, connected components, surface curvature, and surface
area can be used to measure the quality of a reconstruction.

In this paper, we reinterpret MIR as a segmentation prob-
lem over a discretization of the problem's original spatial do-
main. Our formulation eases the extraction and visualization
of material interfaces, and unlike previous work:

� material volume is preserved with bounded error,
� interfaces are continuous across cell boundaries,
� interfaces have low surface area and curvature, and
� reconstruction works for time-varying and static data of

arbitrary dimensionality.

Additionally, our technique scales well with respect to ma-
terial interface complexity, and is easily parallelized.
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The basis of our approach is to discretize cells contain-
ing more than one material into small, fractional volume el-
ements. Each of these “subcells” is then labeled as being
entirely one material or another based upon the problem's
volume fractions. Producing a good labeling of the subcells
is a non-trivial problem, however an initial labeling can be
effectively optimized. In our work, each subcell is attributed
a simple, local energy equal to the number of its neighbor-
ing subcells with a different label. Known as the Potts-model
energy (see [Wu82]), this metric has been widely used in in-
terface problems, from studying cellular structures [GG92]
to interpolating region boundaries between segmented im-
ages [DBTH07]. Optimizing the Potts-model energy over
the discretization leads to a labeling with low surface area
and curvature – desirable properties that translate to our �-
nal interface reconstruction.

Working in a discretized setting greatly simpli�es the con-
struction of material interfaces. In our method, material in-
terfaces are surfaces that separate regions of the discretiza-
tion with different material labels. Surface mesh representa-
tions of these interfaces can be easily extracted, even in cases
with complex topology such as multi-material junctions and
multiple intersections along a single mesh edge.

In the next section, we discuss applications and existing
algorithms for MIR. Section3 details how we cast interface
reconstruction as an optimization problem over a discrete,
labeled grid. Techniques for extracting and visualizing ma-
terial interfaces from the discretization are detailed in Sec-
tion 4, followed by some notes on the implementation of our
method in Section5. Finally, we present results of our work
over two- and three-dimensional �uid �ow datasets in Sec-
tion 6.

2. Related Work

Research on MIR has been largely driven by its applica-
tion in computational �uid dynamics. The Volume of Fluid
(VOF) method [HN81] is a simulation technique for Eu-
lerian multi-�uid hydrodynamic �ows [RK98]. In a VOF
simulation, fractional material volumes are maintained for
each cell. To advance the simulation, interface geometry is
reconstructed in order to calculate the �ux of material be-
tween cells. Storing per-cell material volumes, rather than
explicit interface geometry, eases the simulation of compli-
cated �ows, however the reconstruction of material inter-
faces remains a crucial part of accurately advecting mate-
rials [JEPP04].

There are many MIR algorithms for VOF simulation.
The Simple Line Interface Calculation (SLIC) method de-
scribed by Noh and Woodward [NW76] is one of the earli-
est and simplest MIR algorithm. Cells are partitioned with
axis-aligned planes, such that the total material volume in
each cell is correct. The Piecewise Linear Interface Cal-
culation (PLIC) algorithm of Youngs [You82] is similar to

SLIC, however cells are partitioned by planes aligned to lo-
cal material “gradients.” While PLIC is fast and preserves
volume fractions, its reconstruction is discontinuous across
cell boundaries and is ambiguous for three or more materials
due the ordering of its binary segmentations.

There have been a number of modi�cations to the ba-
sic PLIC algorithm. Pilliod and Pucket [JEPP04] describe
two algorithms, both of which use a least-squares approach
to minimize the error of approximately linear interfaces.
Garimella et al. [GDSS05] demonstrate how to �x certain
local topological inconsistencies in PLIC reconstructions.
Dyadechko and Shashkov [DS05, DS06] describe an inter-
face reconstruction algorithm for volume fraction data aug-
mented with material centroid information.

Attempts have also been made to develop methods for the
direct visualization of volume fraction data. A commonal-
ity of these approaches is that they produce interfaces that
are continuous across cell boundaries – crucial for compre-
hensible visualizations. However, existing methods do not
preserve volume and do not support an arbitrary number of
materials per cell.

One visualization approach is to ignore the volume frac-
tions, and reinterpret MIR as a multi-material segmentation
problem. Mesh nodes are assigned a material label – in-
duced by pure cell neighbors, or from the predominant ma-
terial surrounding the node – and the goal becomes to gen-
erate separating surfaces between nodes with different la-
bels. For rectilinear grids, methods such as dual contour-
ing [JLSW02] and multiple material Marching Cube meth-
ods [HSSZ97, WJMS03, BL03] produce valid segmenta-
tions; Nielson and Franke [NF97] describe how to construct
segmenting surfaces for unstructured tetrahedral meshes.

Isosurfacing of volume fractions is also common. Bonnell
et al. [BSD� 00,BDS� 03] perform isosurfacing over the dual
grid, calculating isosurface intersections using barycentric
interpolation in the space of the volume fractions. A prob-
lem with this approach is that interfaces no longer coincide
with the mesh from the original problem. Meredith [Mer04]
averages volume fractions to mesh nodes and performs iso-
surfacing upon the original mesh. Nevertheless, both meth-
ods miss small scale features entirely (e.g., thin shells), do
not preserve volume fractions, and break down with many
materials.

In our work, we subdivide cells containing material inter-
faces and optimize the labeling of small, fractional volume
elements. Material interfaces become segmenting surfaces
between regions of the discrete grid with different material
labels. In the next section we describe how to construct and
optimize the labeling of the discretization; the extraction and
visualization of continuous material interfaces in this dis-
crete context is described in Section4.
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(a) Problem (b) Initial State (c) Swap (d) Converged State

Figure 1: Algorithm overview focusing upon a single mixed cell with both pure and mixed neighbors (a). During optimization of the labeled
discretization (b) avolume conservative swapof two subcell labels (c) is performed probabilistically, based upon its effect on the Potts-model
energy. The converged material interface reconstruction produced by our method is shown in (d).

3. Method

Consider a spatial domain that has been decomposed into
a �nite grid of cellsC. In ann-material problem, each cell
c 2 C has an associated tupleVc = ( v1; : : : ;vn), where the
valuevi is the fractional volume of materiali within the cell.
Volume fractions are non-negative (vi � 0), and account for
the entire volume of the cell (å n

i= 1 vi = 1). Pure cells are
entirely one material, whilemixedcells have multiple non-
zero volume fractions. Figure1(a)shows a hypothetical MIR
problem in which pure cells are shown in a solid color.

Our method begins with a discretization step. Each cell
is subdivided intoS subcells of uniform fractional volume
dA= 1

S to form the discretizationD. We allow each subcell,
in turn, to be assigned a label corresponding to one of then
materials.

In this discrete setting, we formulate material interfaces
as separating surfaces between regions ofD with different
material labels. After discretization, therefore, the goal be-
comes to generate a simple labeling of the subcells such that
problem's volume fractions are preserved as closely as pos-
sible. Our approach – described in the remainder of this sec-
tion – is to �rst produce an initial, valid labeling and then
apply optimization.

We begin by randomly assigning material labels to sub-
cells with the constraint that for each labeli 2 (1; : : : ;n) there
are approximatelyvi

dA subcells with labeli in cell c. Fig-
ure1(b) illustrates the initial state ofD after labels have been
assigned based upon the volume fractions shown in1(a).

To improve the labeling we de�ne a local measure of the
labeling quality. In this paper, we use a discrete estimate of
the labeling smoothness known as the Potts model [Wu82].
Consider a labelingf of D such thatfx is the label of sub-
cell x. The Potts-model energy atx is the number of subcells
neighboringx with a different label:

Ex( f ) = å
y2 N

Wx;y � d( fx 6= fy); (1)

whereW is a weighting function for offsets within the local

neighborhoodN (which may span original cell boundaries),
andd = f true : 1; false : 0g.

Extending the Potts-model energy over the entire dis-
cretization

E( f ) = å
x2 D

Ex( f ); (2)

allows for optimization of the labeling through energy mini-
mization. The end result of optimization will be a smoother,
simpler labeling and improved material interfaces.

We optimize the energy function in Equation2 using sim-
ulated annealing [KGV83] in order to have explicit control
of how the labeling is changed. More recent techniques such
as graph cuts [BVZ01,KZ02] are not used because their opti-
mization moves do not conserve volume, a �rm requirement
in our application.

In simulated annealing, changing from one state to an-
other – i.e., from a labelingf to a new labelingf 0 – is al-
lowed probabilistically as a function of the annealing tem-
peratureT and the corresponding change in energyDE:

P =

(
1 DE < 0

e� DE=T otherwise.
(3)

Changes that improve the labeling are always taken.
Changes that increase the total energy remain likely when
T is high, however as the temperature decreases, the system
converges because those changes become much less likely.

Per-cell volume can be maintained by restricting the la-
beling changes considered during optimization. In our ap-
proach, we only allow thevolume conservative swapof two
labels. Here, the labels of two randomly chosen subcells –x
andy – within a cellc are exchanged to produce a new label-
ing, as shown in Figure1(c). Consider the initial Potts-model
energy of the subcell pair(x;y) under the labelingf :

Ex;y( f ) = Ex( f ) + Ey( f ):

Exchanging the labels of this pair would produce a new la-
beling f 0 with energyEx;y( f 0), in which the total per-cell,
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per-material volumes remain unchanged. The change in en-
ergyDE = Ex;y( f 0) � Ex;y( f ) produced by the swap can be
used to determine if the labelingf 0 is accepted during opti-
mization (Equation3).

Using volume conservative swaps guarantees that the la-
beling f accurately re�ects the problem's volume fractions
throughout the optimization process. Thus, an upper bound
on the per-cell errore(c) of the discretization labeling is:

e(c) �

(
(n� 1)dA if c is mixed,

0 otherwise.
(4)

This error bound is driven by the subdivision rateS, and
the resulting quantization of the cell's volume fractions into
multiples of sizedA. Optimization may be performed for
an arbitrarily short or long period of time depending on the
quality of the labeling desired. Sections5 and6 provide in-
sight into the convergence behavior of our approach.

4. Visualization

The labeling of fractional volume elements as entirely one
material or another – described in the previous section – ex-
plicitly encodes the characteristic function of our MIR solu-
tion. In this section, we discuss methods for visualizing ma-
terial regions and constructing surface mesh representations
of material interfaces in this discrete context.

Material regions can be directly visualized in our ap-
proach. Generally speaking, we assign a unique color to each
material and render the discretizationD colored by its cur-
rent labelingf . In 2D this produces a color image, and in
three dimensions results in an image cube which can be vi-
sualized using volume rendering. Time-varying volume frac-
tion data naturally leads to a sequence of multiple images.
Visualizing material regions is attractive in 2D since oc-
clusion is not an issue; correspondingly, in this paper we
render material regions rather than interfaces for all two-
dimensional datasets.

Material interfaces are also simple to extract: interfaces in
our discrete formulation are surfaces that separate regions of
D with different material labels. A surface mesh representa-
tion of material interfaces can be constructed by extracting
co-incident faces between adjacent subcells with different
labels.

Surface meshes constructed in this way are able to cap-
ture simple and complex interface topologies, such as multi-
material junctions and multiple intersections along a single
mesh edge. They also exactly match the volume fractions
given by the labelingf , and the problem's volume frac-
tions with bounded error (Equation4). Upon close inspec-
tion, however, boundaries constructed in this manner can be
unpleasant to visualize because they capture sharp bound-
aries at the sub-cell scale.

An alternate surface construction option is to apply

a multi-material segmentation algorithm over an approx-
imate, smoothed version of the labeling �eld. For two-
material problems interfaces can be extracted using March-
ing Cubes [LC87]. Interfaces in problems with three or
more materials can be extracted using one of various multi-
label segmentation algorithms, such as multi-label Marching
Cubes methods [HSSZ97, WJMS03, BL03], Dual Contour-
ing [JLSW02], or the method of Nielson and Franke [NF97]
on an implicit tetrahedrization of the rectilinear domain. We
have found that �lteringf with a narrow Gaussian kernel im-
proves material interfaces for visualization without introduc-
ing large error (see Section7 for a discussion of the effects
of smoothing upon volume preservation).

5. Implementation

In this section, we provide some implementation details re-
garding topics such as performance, convergence, neighbor-
hood size and weighting, and accuracy.

Performance There are two important areas of perfor-
mance to consider: computation and memory consump-
tion. In terms of computation, simulated annealing opti-
mization of the labeling energy is not cheap. However, it
is straightforward to develop a highly parallel implemen-
tation over independent sets of cells using “checkerboard-
ing” [WPS97]. Interactive visualization also hides the cost
of optimization.
The memory requirement per subcell without encoding is
a single byte forn < 256 materials. Furthermore, memory
usage is reduced by the sparseness of mixed material cells;
often the vast majority of cells in a volume fraction dataset
do not contain interfaces. It is ef�cient to only subdivide
mixed material cells, thus allowing our method to scale
with complexity of the material interfaces rather than the
size of the problem domain.

Convergence In some applications, the quality of simulated
annealingcan be strongly in�uenced by theannealing
schedule– i.e., how the temperatureT changes over time.
We have found, however, that the annealing schedule is
not a crucial factor in our method. This is because the
entire system starts very close to a local minimum be-
fore optimization: pure cells heavily in�uence neighbor-
ing mixed cells, but do not change themselves. Setting the
temperature to a low constant allows the system to consis-
tently converge to a reasonable reconstruction without a
complicated annealing schedule. For all results presented
in this paper we have usedT = 0:25.

Neighborhood The neighborhoodN and weight function
W used in Equation1 are also important. In this paper we
consider the neighbors of subcellx to be its directly inci-
dent subcells – i.e., 8 neighbors in two dimensions, and
26 neighbors in three dimensions, etc. For time-varying
data, the neighborhood can also be extended over time to
encourage temporal coherence. The weight between two
subcells is simply the inverse magnitude of the offset be-
tween the two subcells.
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Figure 2: Evolution in time of the two-dimensional �uid �ows considered in this paper; interfaces were reconstructed by our method. On the
top, a bubble of low density �uid rises through a denser �uid.On the bottom, �ve �uids pass two cylinders (six total materials).

Accuracy The accuracy of our reconstruction in terms of
volume conservation is determined by the level of sub-
division used for discretization (Equation4). Higher lev-
els of subdivision lower the error bound, however conver-
gence will take longer. Ford-dimensional rectilinear grids
we can de�ne the subdivision rateR, such thatS= Rd.
In practice, we have found that subdivision rates between
R= 5 andR= 10 produce good results with fast conver-
gence in two and three dimensions. The upper bound on
error for a 2 material problem in three-dimensions is 0:8%
with R = 5, and 0:1% with R = 10 (125 and 1000 sub-
cells per cell, respectively). Note that these bounds apply
to non-smoothed interfaces; in Section7 we discuss the
empirical error of smoothed surfaces.

6. Results

We have tested our method across multiple volume fraction
datasets resulting from CFD simulations in two- and three-
dimensions. Results in this section were obtained with a
multi-threaded software implementation on an Apple Mac-
Book Pro notebook computer (2.33 GHz Intel Core 2 Duo
processor, 2 GB memory, and an ATI Radeon X1600 graph-
ics card).

Our �rst dataset was generated from a two-dimensional
simulation of a low density �uid bubble rising through a
denser �uid. The computational domain was a 642 rectilin-
ear grid. The top row of Figure2 provides an overview of
this �ow, reconstructed by our method, as it evolves over
200 timesteps. The top row of Figure3 compares our inter-
face reconstruction to PLIC over a 13x10 cell window; our
reconstruction produces simpler, smoother interfaces while
preserving volume from the original data to within 1% error.
Subdivision was set to 102 subcells per mixed cell, and sim-
ulated annealing was performed for 10 seconds per timestep
prior to visualizing the material interfaces.

The next dataset is from a two-dimensional simulation of
�ve �uids passing two cylinders. The computational domain
was 128x64. Our reconstructions of this �ow use a 102 sub-
cell per cell subdivision. The bottom row of Figure2 pro-
vides an overview of this �ow, reconstructed by our method,
as it evolves over 256 timesteps. Due to the method of simu-
lation, the cylinders and “empty” space (in grey) are mod-
eled as a sixth material. While we show geometry of the

Figure 3: Close-ups of regions reconstructed by PLIC (left) and
our method (right). Images in the top row are from the two-
dimensional bubble dataset; the bottom row shows a “T-junction”
between three materials in the two cylinders dataset.

cylinders for clarity, the geometry is neither part of vol-
ume fraction dataset, nor known to our MIR algorithm. In
the bottom row of Figure3 we show a close-up of a 3x3
cell window in which a “T-junction” between three materi-
als is located; our method, while discretized, better captures
the behavior of the interfaces around the junction. We also
use this �ow to illustrate the convergence of our method.
Figure4 shows a single timestep of this �ow with approxi-
mately 7% mixed cells. Simulated annealing was performed
on different parts of the discretization labeling for differ-
ent lengths of time: the top third was left in the initial state
without optimization, the middle third was optimized for 1
second, and the bottom third was optimized for 10 seconds.
While in the most complex cases, the upper error bound re-
mains 2% due to discretization regardless of optimization,
the interfaces become simpler and smoother with brief op-
timization. Simulated annealing for longer than 10 seconds
per timestep does not signi�cantly improve the results.

Our �nal dataset is an extension of the bubble simulation
to three dimensions: again, a low density �uid bubble rises
through a denser �uid. The grid is now 643, and the simula-

c 2008 The Author(s)
Journal compilationc 2008 The Eurographics Association and Blackwell PublishingLtd.



Anderson et al. / Discrete Multi-Material Interface Reconstruction for Volume Fraction Data

Figure 4: Simulated annealing was performed on different parts of thediscretization labeling for different lengths of time: thetop third was
left in the initial state without optimization, the middle third was optimized for 1 second, and the bottom third was optimized for 10 seconds.

tion consists of 100 timesteps. Figure5 provides a split view
of interfaces reconstructed from this dataset as the bubble
bursts: on the left interfaces were extracted by isosurfacing
the smoothed discretization labeling (as described in Sec-
tion 4), and on the right “surfaces” were generated by PLIC.
Subdivision was set to 53 subcells per cell, and simulated an-
nealing was performed for 10 seconds per timestep prior to
visualization of the material interfaces.As part of the supple-
mental material to this paper, we include a movie of both in-
terface reconstructions in a split view over all 100 timesteps.

Section5 noted that the sparseness of cells containing ma-
terial interfaces leads to memory savings when subdivision
is only performed over mixed cells. Figure6 plots the per-
centage of mixed cells over time for each �uid �ow dataset
considered in this paper. For both bubble datasets, the per-
centage is very low – below 6% – over all timesteps. For
the �ve �uids passing two cylinders dataset, the percentage
of mixed cells increases over time because the material in-
terfaces become more complex. However, even for the most
complex timestep, the storage cost of the discretization is re-
duced approximately 90% by only subdividing mixed cells.

7. Conclusion

In this paper we have presented a discrete approach to MIR
based upon optimizing the labeling of fractional volume el-
ements over a subdivided spatial domain. We introduced a
volume conservative swapmove for the optimization pro-
cess, and discussed methods for extracting and visualizing
material interfaces from a labeled discretization. Our tech-
nique gives signi�cantly better results than previous meth-

ods, producing interfaces between multiple materials that are
continuous across cell boundaries for time-varying and static
data in arbitrary dimension with bounded error.

There remains, however, future work to be performed on
the algorithmics of discrete multi-material interface recon-
struction:

Unstructured Grids We have only considered volume
fraction data over rectilinear grids; a logical extension of
this work is to support unstructured meshes. A straight-
forward approach might be to discretize the space around
mixed, unstructured cells with a regular subdivision, as-
sign subcells to the cell containing their centroid, and to
proceed with optimization and visualization as described
in this paper.

Thin Interfaces Our method, like most others, can have
dif�culty reconstructing thin interfaces. Figure7 is an ex-
ample. In our approach, reasonable discretization reso-
lutions can be insuf�cient to allow thin surfaces to con-
nect across a cell. Additionally, optimization of the Potts-
model energy can produce “blobs” rather than thin in-
terfaces due to its surface area and curvature minimizing
properties.

Smoothing As mentioned in Section4, smoothing the la-
beling �eld prior to segmentation avoids unwanted visual
artifacts at the sub-cell level caused by discretization. Af-
ter smoothing, however, the error bound discussed in Sec-
tion 3 is no longer valid. Empirically we have found that
the small size of subcells limits the volume changing ef-
fects of smoothing: for instance, the average volume error
for the three-dimensional bubble shown in Figure5 was
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Figure 5: Interface reconstructions of the three-dimensional bubble dataset as the bubble bursts. On the left, we show the interface extracted
from our discretization labeling; on the right is the discontinuous 3D PLIC reconstruction which has only one polygon per cell.

approximately 7:5% after Gaussian smoothing of the la-
beling �eld. Increasing the discretization resolution to 83

subcells per cell approximately halves this error.
While the volume changing effects of smoothing are rel-
atively small and dif�cult to perceive during visualiza-
tion, it would be best to have the advantages of smoothing
while maintaining a tight error bound. In future work, we
intend to apply volume-conservative surface fairing tech-
niques, such as those of Desbrun et al. [DMSB99] or Xiao
et al. [XLPF06], to this problem.

Energy Metric The Potts-model energy is not the only pos-
sible metric for the energy of a labeled discretization. In
the presence of domain-speci�c knowledge, such as spe-
ci�c material properties, other energy metrics might pro-
duce better results than the Potts-model energy.

Other domains, besides simulation, are likely to bene�t
from robust, volume conservative interface reconstruction
techniques. A concrete example is spectral imagery from
the �eld of remote sensing (e.g. [VGC� 93]). The pixels
of spectral images are sampled functions of radiance ver-
sus wavelength, rather than typical tristimulus RGB pixels.
From these spectral functions it is possible to estimate the ra-
tios of different materials present at each pixel [SD93]. We
look forward to applying our methods in this setting to re-
construct sub-pixel interfaces within spectral images, as well
as to other problem with volume fraction data.
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Figure 7: Thin interfaces (left, 10x10 grid) are dif�cult to recon-
struct for both PLIC (middle) and our method (right).
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